Sharp Power Mean Bounds for the Combination of Seiffert and Geometric Means
نویسندگان
چکیده
منابع مشابه
Sharp Power Mean Bounds for the Combination of Seiffert and Geometric Means
and Applied Analysis 3 The following sharp lower power mean bounds for 1/3 G a, b 2/3 H a, b , 2/3 G a, b 1/3 H a, b , and P a, b can be found in 4, 6 : 1 3 G a, b 2 3 H a, b > M−2/3 a, b , 2 3 G a, b 1 3 H a, b > M−1/3 a, b , P a, b > Mlog 2/ logπ a, b 1.8 for all a, b > 0 with a/ b. The purpose of this paper is to answer the question: for α ∈ 0, 1 , what are the greatest value p and the least...
متن کاملSharp Bounds for Seiffert Mean in Terms of Weighted Power Means of Arithmetic Mean and Geometric Mean
For a,b > 0 with a = b , let P = (a− b)/(4arctana/b−π) , A = (a+ b)/2 , G = √ ab denote the Seiffert mean, arithmetic mean, geometric mean of a and b , respectively. In this paper, we present new sharp bounds for Seiffert P in terms of weighted power means of arithmetic mean A and geometric mean G : ( 2 3 A p1 + 3 G p1 )1/p1 < P < ( 2 3 A p2 + 3 G p2 )1/p2 , where p1 = 4/5 and p2 = logπ/2 (3/2)...
متن کاملOptimal Convex Combination Bounds of Seiffert and Geometric Means for the Arithmetic Mean
We find the greatest value α and the least value β such that the double inequality αT (a,b) + (1−α)G(a,b) < A(a,b) < βT (a,b) + (1− β)G(a,b) holds for all a,b > 0 with a = b . Here T (a,b) , G(a,b) , and A(a,b) denote the Seiffert, geometric, and arithmetic means of two positive numbers a and b , respectively. Mathematics subject classification (2010): 26E60.
متن کاملSharp Bounds for Seiffert Mean in Terms of Contraharmonic Mean
and Applied Analysis 3 2. Proof of Theorem 1.1 Proof of Theorem 1.1. Let λ 1 √ 4/π − 1 /2 and μ 3 √3 /6. We first proof that the inequalities T a, b > C λa 1 − λ b, λb 1 − λ a , 2.1 T a, b < C ( μa ( 1 − μb, μb 1 − μa 2.2 hold for all a, b > 0 with a/ b. From 1.1 and 1.2 we clearly see that both T a, b and C a, b are symmetric and homogenous of degree 1. Without loss of generality, we assume th...
متن کاملSharp Generalized Seiffert Mean Bounds for Toader Mean
and Applied Analysis 3 2. Lemmas In order to establish ourmain result, we need several formulas and lemmas, whichwe present in this section. The following formulas were presented in 10, Appendix E, pages 474-475 : Let r ∈ 0, 1 , then
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2010
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2010/108920